Domain-to-domain coupling in voltage-sensing phosphatase
نویسندگان
چکیده
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.
منابع مشابه
Another story of arginines in voltage sensing: the role of phosphoinositides in coupling voltage sensing to enzyme activity
The sensing of transmembrane electrical potential has long been thought to be unique to voltage-gated ion channels. Recently, however, transmembrane voltage has been shown to regulate the enzymatic activity of a protein, called voltage-sensing phosphatase (VSP), that is conserved across diverse phyla (Murata et al., 2005; Murata and Okamura, 2007; Hossain et al., 2008). In VSP, the voltage sens...
متن کاملExpression of the voltage-sensing phosphatase gene in the chick embryonic tissues and in the adult cerebellum
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor domain (VSD) and the cytoplasmic domain with phosphoinositide-phosphatase activities. It operates as the voltage sensor and directly translates membrane potential into phosphoinositide turnover by coupling VSD to the cytoplasmic domain. VSPs are evolutionarily conserved from marine invertebrate up to humans. Recently, ...
متن کاملElectro-chemical coupling in the voltage-dependent phosphatase Ci-VSP
In the voltage-sensing phosphatase Ci-VSP, a voltage-sensing domain (VSD) controls a lipid phosphatase domain (PD). The mechanism by which the domains are allosterically coupled is not well understood. Using an in vivo assay, we found that the interdomain linker that connects the VSD to the PD is essential for coupling the full-length protein. Biochemical assays showed that the linker is also n...
متن کاملA Probabilistic Three-Phase Time Domain Electric Arc Furnace Model based on analytical method
An electric arc furnace (EAF) is known as nonlinear and time variant load that causes power quality (PQ) problems such as, current, voltage and current harmonics, voltage flicker, frequency changes in power system. One of the most important problems to study the EAF behavior is the choice of a suitable model for this load. Hence, in this paper, a probabilistic three-phase model is proposed base...
متن کاملCoupling between the voltage-sensing and phosphatase domains of Ci-VSP
The Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) shares high homology with the phosphatidylinositol phosphatase enzyme known as PTEN (phosphatase and tensin homologue deleted on chromosome 10). We have taken advantage of the similarity between these proteins to inquire about the coupling between the voltage sensing and the phosphatase domains in Ci-VSP. Recently, it was sho...
متن کامل